INTERVALOS DE CONFIANZA PARA LA VARIANZA

En estadística, se llama intervalo de confianza a un par o varios pares de números entre los cuales se estima que estará cierto valor desconocido con una determinada probabilidad de acierto. Formalmente, estos números determinan un intervalo, que se calcula a partir de datos de una muestra, y el valor desconocido es un parámetro poblacional. La probabilidad de éxito en la estimación se representa con 1 - α y se denomina nivel de confianza. En estas circunstancias, α es el llamado error aleatorio o nivel de significación, esto es, una medida de las posibilidades de fallar en la estimación mediante tal intervalo.1
El nivel de confianza y la amplitud del intervalo varían conjuntamente, de forma que un intervalo más amplio tendrá más probabilidad de acierto (mayor nivel de confianza), mientras que para un intervalo más pequeño, que ofrece una estimación más precisa, aumenta su probabilidad de error.
Para la construcción de un determinado intervalo de confianza es necesario conocer la distribución teórica que sigue el parámetro a estimar, θ.2​ Es habitual que el parámetro presente una distribución normal. También pueden construirse intervalos de confianza con la desigualdad de Chebyshev.
En definitiva, un intervalo de confianza al 1 - α por ciento para la estimación de un parámetro poblacional θ que sigue una determinada distribución de probabilidad, es una expresión del tipo [θ1θ2] tal que P[θ1 ≤ θ ≤ θ2] = 1 - α, donde P es la función de distribución de probabilidad de θ.

Comentarios

Entradas populares de este blog

PRUEBA DE HIPOTESIS PARA LA MEDIA, VARIANZA Y PROPORCION

Distribución de varianza