estimaciones

En inferencia estadística se llama estimación al conjunto de técnicas que permiten dar un valor aproximado de un parámetro de una población a partir de los datos proporcionados por una muestra. Por ejemplo, una estimación de la media de una determinada característica de una población de tamaño N podría ser la media de esa misma característica para una muestra de tamaño n.1
La estimación se divide en tres grandes bloques, cada uno de los cuales tiene distintos métodos que se usan en función de las características y propósitos del estudio:
  • Estimación puntual:2
    • Método de los momentos;
    • Método de la máxima verosimilitud;
    • Método de los mínimos cuadrados;
  • Estimación por intervalos.
  • Estimación bayesiana.

Estimar qué va a ocurrir respecto a algo (o qué está ocurriendo, o qué ocurrió), a pesar de ser un elemento muy claramente estadístico, está muy enraizado en nuestra cotidianidad. Dentro de ello, además hacemos estimaciones dentro de un intervalo de posibilidades. Por ejemplo: “creo que terminaré la tarea en unos 5-6 días”. Lo que hacemos en el terreno del análisis de datos es aplicar matizaciones técnicas a este hábito. Vamos a dedicar este documento al concepto de estimación, comenzando con la estimación puntual. Después nos ocuparemos de desarrollar un modelo de estimación por intervalo donde identificaremos los elementos fundamentales, con su significado y símbolo. Y, por último, habrá que desarrollar cómo se calculan esos elementos. La estimación puntual Estimar puede tener dos significados interesantes. Significa querer e inferir. Desde luego, el primer significado es más trascendente. Pero no tiene ningún peso en la estadística, disciplina que no se ocupa de los asuntos del amor. El segundo significado es el importante aquí. Una estimación estadística es un proceso mediante el que establecemos qué valor debe tener un parámetro según deducciones que realizamos a partir de estadísticos. En otras palabras, estimar es establecer conclusiones sobre características poblacionales a partir de resultados muestrales. Vamos a ver dos tipos de estimaciones: puntual y por intervalo. La segunda es la más natural. Y verás que forma parte habitual de nuestro imaginario como personas sin necesidad de una formación estadística. La primera, la estimación puntual, es la más sencilla y, por ese motivo, vamos a comenzar por ella. Ocurre, además, que la estimación por intervalo surge, poco más o menos, de construir un intervalo de posibles valores alrededor de la estimación puntual. Una estimación puntual consiste en establecer un valor concreto (es decir, un punto) para el parámetro. El valor que escogemos para decir “el parámetro que nos preocupa vale X” es el que suministra un estadístico concreto. Como ese estadístico sirve para hacer esa estimación, en lugar de estadístico suele llamársele estimador. Así, por ejemplo, utilizamos el estadístico “media aritmética de la muestra” como estimador del parámetro “media aritmética de la población”. Esto significa: si quieres conocer cuál es el valor de la media en la población, estimaremos que es exactamente el mismo que en la muestra que hemos manejado.

Comentarios

Entradas populares de este blog

PRUEBA DE HIPOTESIS PARA LA MEDIA, VARIANZA Y PROPORCION

INTERVALOS DE CONFIANZA PARA LA VARIANZA

Distribución de varianza